元照


圖書

法律圖書
代理總經銷

優惠活動


元照: 法律學習.研究

大數據偵查

大數據偵查

【作 者】王 燃
【書 號】 5X065RA
【出版社】 元照出版公司
【出 版】 2018/07
【版 次】 1
【ISBN/ISSN】978-957-8607-48-4
【定 價】380
【特 價】342
試讀: 1
 
 
 本書簡介

大數據偵查是什麼?
大數據偵查的思維特徵以及相關誤區?
大數據偵查的技術方法?
大數據偵查的模式有哪些?
大數據偵查可能對個人信息權、正當法律程序產生哪些影響?
大數據偵查的相關配套制度構建有哪些?
……

  本書緊扣「大數據」這一時代主題,著眼於偵查領域大數據運用在法律研究方面的空白,構建起包括思維、模式、方法等全方位的大數據偵查體系,同時對大數據偵查可能產生的法律問題進行探討,為偵查實務中大數據的運用提供方法、法律理論及程序上的指導。

 
 圖書目錄

序/劉品新
自 序
臺灣版自序


第一章 導 論/1
 第一節 背景介紹/1
 第二節 文獻綜述/2
  一、有關大數據的研究綜述及評價/4
  二、有關大數據偵查概念的研究綜述及評價/9
  三、有關大數據技術在偵查領域運用的研究綜述及評價/11
  四、有關大數據偵查與傳統偵查相比較的研究綜述及評價/15
  五、有關大數據偵查所存在問題及回應的研究綜述及評價/17
 第三節 創新及意義/21
  一、創新之處/21
  二、研究意義/23


第二章 大數據及大數據偵查介說
 第一節 大數據的介說/25
  一、大數據的沿革與發展/25
  二、大數據的概念與特徵/32
 第二節 大數據偵查的介說/37
  一、大數據偵查概念的提出/38
  二、大數據偵查的特徵/44
  三、大數據偵查與技術偵查、偵查技術/46
  四、大數據偵查與信息化偵查、情報導偵/49
  五、大數據在偵查中的運用形式/54
 第三節 大數據偵查的價值/58
  一、推動事後偵查向事前偵查轉型/58
  二、推動被動偵查向主動偵查轉型/60
  三、推動單線偵查向協作偵查轉型/61
  四、推動粗放式偵查向集約式偵查轉型/62
 第四節 本章結論/64


第三章 大數據偵查的思維
 第一節 大數據偵查思維的體現/65
  一、相關性思維/65
  二、整體性思維/67
  三、預測性思維/71
 第二節 大數據偵查思維的誤區/74
  一、數據越多越好/75
  二、數據源可以不精確/76
  三、大數據一定是客觀準確的/78
  四、相關性可以替代因果性/86
  五、預測性違背無罪推定原則/89
 第三節 大數據偵查思維對司法證明的影響/91
  一、對傳統司法證明相關性的影響/91
  二、對傳統司法證明標準的影響/95
 第四節 本章結論/99


第四章 大數據偵查的模式
 第一節 個案分析模式和整體分析模式/102
  一、個案分析模式與整體分析模式的區分標準/102
  二、個案分析模式與整體分析模式的比較/103
  三、個案分析模式與整體分析模式的區分意義/104
 第二節 回溯型偵查模式和預測型偵查模式/105
  一、回溯型偵查模式和預測型偵查模式的區分標準/105
  二、回溯型偵查模式和預測型偵查模式的比較/108
  三、回溯型偵查模式和預測型偵查模式的區分意義/111
 第三節 原生數據模式和衍生數據模式/114
  一、原生數據模式和衍生數據模式的區分標準/114
  二、原生數據模式和衍生數據模式的比較/115
  三、原生數據模式和衍生數據模式的區分意義/117
 第四節 「人-數-人」模式和「案-數-案」模式/119
  一、「人-數-人」模式和「案-數-案」模式的區分標準/119
  二、「人-數-人」模式和「案-數-案」模式的比較/120
  三、「人-數-人」模式和「案-數-案」模式的區分意義/122
 第五節 「案-數-人」模式和「人-數-案」模式/123
  一、「案-數-人」模式和「人-數-案」模式的內涵/123
  二、「案-數-人」模式的運用/126
  三、「人-數-案」模式的運用/128
 第六節 本章結論/129


第五章 大數據偵查的方法
 第一節 數據搜索/131
  一、數據庫搜索/132
  二、互聯網搜索/134
  三、電子數據搜索/137
 第二節 數據碰撞/138
  一、數據碰撞的原理/138
  二、數據碰撞的示例/141
 第三節 數據挖掘/146
  一、手機數據挖掘/147
  二、話單數據挖掘/159
 第四節 數據畫像/164
  一、數據畫像的原理/164
  二、數據畫像的示例/167
 第五節 犯罪網絡關係分析/168
  一、犯罪網絡關係分析的緣起/168
  二、犯罪網絡關係分析的原理及示例/170
 第六節 犯罪熱點分析/174
  一、犯罪熱點分析的原理/174
  二、犯罪熱點分析的示例/175
 第七節 大數據公司調取數據/177
 第八節 本章結論/181


第六章 大數據偵查的制度構建
 第一節 大數據偵查的權利保障制度/183
  一、大數據偵查對個人信息權的衝擊/184
  二、大數據偵查中個人信息權的保障制度/197
 第二節 大數據偵查的程序保障制度/203
  一、大數據偵查的「黑箱效應」/203
  二、大數據偵查的正當程序規制/207
 第三節 大數據偵查的相關配套機制/209
  一、大數據偵查的數據共享機制/210
  二、大數據偵查的技術應用平臺/215
  三、大數據偵查的第三方行業規範/219
 第四節 本章結論/229


結 論/231
參考文獻/235
後 記/247

 作者簡介
王 燃
  女,生於江蘇省淮安市,天津大學法學院講師,天津大學智慧法治研究院研究員。師從證據法學大師何家弘先生,畢業於中國人民大學,獲法學博士學位。研究領域:證據學與偵查學、智慧法治、數據開放、數據治理等。曾主持並參與中國法學會、天津市檔案局、國家社會科學基金、教育部、最高人民檢察院等多項與大數據相關課題,發表論文十餘篇。《大數據時代偵查模式的變革及其法律問題研究》一文獲第十一屆中國法學青年論壇主題徵文一等獎。數次受邀為政法領域大數據班授課,在大數據及互聯網主題學術會議上發言頗受關注與認可,現致力於「大數據+法律」的交叉研究,推進中國智慧法治進程的發展。
 
 序 文

愛麗絲:「請你告訴我該往哪個方向走。」
柴郡貓:「這取決於你要到哪裡去。」
愛麗絲:「我並不在乎要到哪裡去。」
柴郡貓:「那你走哪條路都沒關係。」
愛麗絲解釋道:「我只想去任何一個地方。」
柴郡貓:「你一定能夠實現這個願望,只要你走的夠遠就可以了。」

  那還是2014年,我開始研讀英國學者舍恩伯格的經典之作《大數據時代:生活、工作與思維的大變革》,被其中的恢宏描述震撼到了。之後又看了中國學者涂子沛的《大數據》等相關著作,進一步被大數據戰略、數據革命、數據帝國、數據治國、數據開放、大趨勢、大挑戰以及大變革等辭彙所打動。隨後,我開始鄭重思考自己所在團隊¾¾中國人民大學電子證據研究小組(我們自稱  「人大團隊」),在法學研究方面該不該向大數據法律和司法方向轉型。這時,我看到了當時網上風靡的帖子,它以《愛麗絲夢遊仙境》的場景為例,講述了大數據技術中數據挖掘的魅力¾¾任何業務問題都可以轉換為數據挖掘問題。我理解,這是大數據時代的寓言。
  「人大團隊」並不是一個嚴謹的學術機構,它是由人大法學院、信息學院、信息資源管理學院的師生基於共同的興趣走到一起形成的。它也有研究平臺和實務平臺,前者包括人大法學院的證據學研究所、網絡犯罪與安全研究中心、知識工程與數據工程教育部重點實驗室等;後者包括中國人民大學物證技術鑑定中心、人大法學院證據學實驗室等。後來,我們又陸續聘請了公檢法紀以及公證、鑑定機構、科研院所等部門朋友參加。逐漸壯大了隊伍,形成了覆蓋電子證據全行業的規模。有了共同的研究旨趣,「人大團隊」做了很多針對電子證據的法律與技術交叉、理論與實務跨界的工作,在電子證據的法治建設、理論創新、實務推動方面做得頗有聲色。「人大團隊」並沒有名義上的負責人,我的恩師何家弘教授算是「精神領袖」。早在2000年9月,他訪問日內瓦國際電信聯盟等機構歸來,敏銳地決策要認真研究電子證據問題。 這是「人大團隊」面向IT時代的一次布局。事實證明,此次布局是非常有遠見的,且相當成功的。
  那麼,「人大團隊」在DT時代該做出什麼樣的貢獻呢?變與不變,就是首先面對的問題。一方面,「大數據氾濫」。許多人「言必大數據」,但真真假假、虛虛實實,浮誇的成分不少。大數據能否支撐一個時代,能否改變社會方方面面,當時尚不明確。即便大數據技術就是時代性的,中國大陸是否需要配套的司法治理、法治建設,也令人疑惑。「人大團隊」一旦轉型,能否一如既往地形成獨特優勢,也需要琢磨。另一方面,「法律人不能缺席大數據」。大數據是一座巨大的金礦,法治的陽光不能照耀到是不可能的。2013年美國奧巴馬總統(「大數據總統」)將之定義為「未來的新石油」,將「大數據戰略」上升為國家意志,聲稱未來對數據的占有和控制甚至將成為國家核心資產。就中國大陸而言,2011年溫州動車事故也開始讓人們領略到了社交大數據的威力。當年7月23日20時30分05秒,D301次列車與D3115次列車在溫州發生動車組列車追尾事故。在專案組成立之前,新浪公司就發布了3286883條關於這起事件的微博;之後,基於700多萬條微博製作了視頻,從事故現場、尋人、遇難名單、獻血現場等多角度展示這次突發事件的真相。至此,我冥冥中受《愛麗絲夢遊仙境》柴郡貓說法的啟示,決定拓展團隊研究範圍。
  事實證明,這一決策是正確的。大數據發展的潮流是不可抗拒的,大數據法律和司法的改變也是亟需的。    中國計算機學會大數據專家委員會在「2013年中國大數據發展白皮書與2014年大數據發展趨勢預測」報告中論斷,2014年將是大數據從「概念」走向「價值」的元年。2015年後,中國大陸的大數據發展急劇加速:7月,《國務院辦公廳關於運用大數據加強對市場主體服務和監管的若干意見》發布,提出運用大數據加強對市場主體的服務和監管;8月,國務院發布《促進大數據發展行動綱要》,推動各行業大數據發展,強調數據資源共享開放;10月,黨的十八屆五中全會明確提出「國家大數據戰略」;2016年3月,「十三五」規劃綱要頒布,再次強調國家大數據戰略。司法系統也開始加入大數據的時代潮流。僅就公開的新聞報導來看,今年下半年中央政法委孟建柱書記、最高人民檢察院曹建明檢察長、李如林副檢察長等紛紛率團調研貴州大數據交易中心,為「大數據+司法」進行布局。尤其是2016年10月21日,上午高檢院召開了大數據應用研究會,下午中政委請馬雲給全國政法隊伍講授大數據等科技創新在社會治理中的運用。大數據法律共同體已經全面行動。
  「人大團隊」較早地轉向大數據法律研究,也就是打開了另外一扇窗。2015年5月13日,我第一次受邀給全國軍隊保衛部門講授《大數據偵查與大數據證據》,獲得了良好的讚譽,儘管當時的認識還不夠深入。此後,我陸續以《大數據時代網絡安全問題與挑戰》、《大數據推動檢察辦案變革》、《大數據在檢察辦案中的運用》、      《大數據在紀律審查中的運用》等為題開講,得到了越來越多的認同,在此過程中也與一線辦案同志交流了寶貴經驗。實務中,我們積極改造所熟悉的手機取證業務,拓展基於大數據取證的司法鑑定工作,並在個案中獲得成功。我們還敏銳地發現,幾乎所有的大數據公司都透過手機APP,收集廣大用戶位置等信息,而這一現象將會極大地改變現有的偵查制度、證據制度和權利保障制度。2015年12月,每年一度的網絡犯罪高峰論壇召開,我代表團隊就「大數據的證據價值、偵查模式與權利保障」發言,以豐富的實踐案例和直觀的技術圖示吸引了場內外廣大專家學者的熱議。
  今天看來,「萬物皆數據」,「數據司法是未來科技司法的主方向」,「司法人員將越來越離不開大數據引領」等言論,越來越成為新的共識。這些規律我們較早地感受到了,也做了一些有益的探索與推動。「人大團隊」在許多場合都呼籲,中國大陸的網絡安全、反貪偵查、紀律審查、食安執法、網信執法、文化執法等工作都應加強大數據的運用,深化同大數據公司的合作,同時有效規制大數據的安全與共享問題,並能夠給出具體的方案。
  大數據法律與司法問題歸根到底是下一代年輕人的舞臺。在這一進程中,「人大團隊」很多年輕人開始持續發力。謝君澤老師在挖掘電子文檔痕跡方面有著獨到的認識,他基於對批量產生的文檔痕跡進行分析,成功地協助查辦了國家審計署審計華潤公司煤礦併購的洩密案件、  天津港8•12爆炸案之安評部門瀆職犯罪案件等。我去微軟中國公司交流時,方得知這可以叫做「大痕跡數據」。  君澤雖不是我名下的學生,但卻是輔助我時間最長、最得力的助手和骨幹,現已名聲在外,前途無量。徐菲、    張楊楊、郭樹正同學很早就配合我對電子定位技術進行研究,探索收集APP背後的IP位址、MAC位址等大數據的方法,並已日臻成熟;周迪、呂宏慶同學擅長互聯網數據挖掘,對網絡輿情分析、數據畫像及數據碰撞等率先探索;陳澤鴻、張洪銘同學積極試用人大信息學院開發的「時事探針」平臺,試探性地繪製了中國大陸的反腐敗指數圖、網絡犯罪指數圖;張藝貞、黃礱同學較早借鑑國外「OPEN DATA」機制,對中國大陸公開數據庫如何歸整利用進行實驗;胡聰同學運籌帷幄,組織團隊對BAT公司調研,推動網信部門和檢察部門建立大數據公司有效協查調證機制;王耀同學撰寫《職務犯罪偵查的大數據模式初探》一文,展示了反貪工作中借助大數據的現實與前景……這樣的優秀學生很多,他們以自己的方式在感受大數據時代的脈搏。
  此外,「人大團隊」特別注意與「外面」的大數據專家合作。「外腦」的指導對於我們開展研究起到了關鍵性的作用。例如,人大信息學院院長文繼榮教授曾經長期任職於微軟公司,我們多次登門拜訪求教大數據知識,    文教授不吝解惑,並無償向我們提供了「時事探針」應用平臺,還根據我們的需要特意對中國裁判文書網的海量裁判文書進行大數據分析;人大公共決策實驗室王克平主任多次為我們提供最先進的大數據可視化展示實驗室,不厭其煩地展示大數據在公共決策、司法辦案中的運用;人大信息資源管理學院的錢毅等教授也伸出援手,協助我們成功申報國家社科基金項目「大數據時代電子文件的證據規則與管理法制建設研究」,促成了一個跨越法學與電子文件管理學的大數據研究機會。中國科學院高能物理研究所的許榕生教授、香港大學K. P. Chow教授也不吝賜教,分享了他們在大數據分析及預測方面的寶貴經驗。還要特別感謝來自我掛職的檢察系統,以及檢察行業的朋友。他們讓我們看到了大數據與檢察工作、大數據平臺建設、大數據預防、大數據初查、大數據偵查、大數據管理、大數據挖掘、大數據碰撞、大數據畫像等鮮活例子,也講授了他們在實務中積累的寶貴經驗。大數據轉型研究之路上,這樣的同道者,我們有很多很多,銘記於心。
  王燃博士也是「人大團隊」一員,是最值得稱讚的大數據法律制度探索者。我依稀記得她初到人大法學院證據學教研室的場景。那一年級共有五位法學碩士,她看起來話不多,抽籤師從我的恩師何家弘教授(跟我同輩呢)。不過,我也給她上課,帶著她做項目。碩士兩年、博士三年下來,她給我的印象¾¾不是最聰明的學生,但卻蠻有智慧,更是執行力超強。馬雲說過,大數據時代電腦一定比人類聰明,但人類永遠比電腦有智慧。王燃是不是  「人大團隊」中的有智者呢?天知道,反正她選擇了大數據法律和司法作為研究方向。
  忘了是什麼時候,她徵詢我關於博士研究方向的建議。我可能隨口說了大數據法律問題研究很有前景。其實我的內心想法是,團隊必須研究大數據法律問題,但這個主導者可能未必是她。結果她認真了,很快拿出了文獻綜述和寫作提綱。而這個題目對於她而言,顯然是有相當難度的。她既沒有技術背景,也對實務不甚瞭解,還不瞭解海外發展情況。誰知道她會怎麼切入研究?她會不會做出成果?
  她的智慧就是「認定了就做」。她擠出時間到北京市檢察院掛職,儘快瞭解實務;她訪學臺灣,瞭解境外情況;她更瞅準時機向各位老師求教,博採眾長;她還虛心向法律碩士的師弟師妹們學習手機取證、大數據分析等經驗,彌補了自己技術盲的短板。我記得博士論文開題時,她拿出了一份「不太好」的寫作提綱。導師組建議重新梳理另起爐灶,而我直接提議她集中研究當時已經熱興的大數據偵查,寫透大數據偵查的思維、模式、措施、制度等基礎問題。沒想到,半年後她真的如樣交出了論文稿。當然,她也付出了身心交瘁的代價,她經常跟熟悉的同學開玩笑說最後悔讀博士了,弄得一臉痘。其實,她博士論文答辯通過時滿是喜悅,在場的每個人都能夠感受到她的心情。幾個月後,她便將博士論文修改完善出版,這也是執行力強的明證。
  當前中國大陸政法系統正積極向大數據技術靠近、向大數據戰略轉型。這時收到她《大數據偵查》專著文稿,我也非常欣慰。「人大團隊」終於有成員拿出了大數據法律的第一本專著,這應該也是中國大陸的第一本大數據偵查論著。我想,這就像我2004年出版《中國電子證據立法研究》專著一樣,走出第一步就意味著良好的學術開端。我相信,她還會推出諸如《大數據證據》、《大數據權利法律保護》之類的「幾部曲」。據我瞭解,她的論文  《大數據時代偵查模式的變革及其法律問題研究》榮獲了第十一屆中國法學青年論壇主題徵文一等獎,她以「大數據偵查與大數據證據」開啟了天津大學的「北洋法學學術沙龍」第一講,她還受邀給全國檢察機關第一次大數據專班主講「大數據證據」。嶄露頭角的她,會在這條道路上走好走遠!
  以我的學術眼光,王燃博士的《大數據偵查》一書具有相當的創新性:一是概念的全面創新。她構建起大數據偵查較為完整的框架,包括概念、思維、模式、方法及相關制度構建等。二是重要觀點具有前瞻性。本書很多觀點是在博士論文中表達的,當時提出的很多觀點現在看來具有相當的前瞻性,並已逐漸被證實。例如,書中揭示了大數據熱潮下的一些思維誤區;強調大數據相關思維和預測思維在偵查中的廣泛運用前景,尤其是預測性,必將推動事後偵查向事前偵查、預測偵查轉型;提出大數據偵查的模式,強調從數據空間去尋找突破點;提出大數據搜索、大數據碰撞、大數據畫像、大數據挖掘、犯罪熱點分析、犯罪網絡分析、大數據公司取證這幾種大數據偵查的具體方法,已經越來越為實務部門所開發運用;強調大數據偵查在發展技術、應用的同時,要注意其所帶來的法律問題以及對傳統法律原理、規則的衝擊,應當對大數據偵查進行一定的程序規制。誠然,這本書也難免有幼稚和錯誤之處,這有賴於讀者們的慧眼識別。
  馬雲還說過,「整個大數據時代最重要的事情,是要做到『事前諸葛亮』,就是要有預防機制。」        《大數據偵查》一書在某種程度上也是「事前諸葛亮」。王燃博士是不是在兩年前就預測到了「大數據+司法」在今天的熱絡呢?是不是也昭示著「大數據×司法」在未來的突起呢?
  大數據時代是充滿無限生機的時代,也是一切都有可能的時代。王燃博士出版《大數據偵查》為人們提供了一個「柴郡貓」智慧的小樣本。同時,本書的出版也為  「人大團隊」的大數據之行留下了一個印記。我相信,這本書開卷有益。我期望,「人大團隊」在DT時代做出新的華麗轉身。

劉品新
2016年10月22日寫於拉薩


自 序

  本書的設想最早形成於2014年11月。儘管當時中國大陸官方尚未提出大數據戰略,但大數據技術已經在電子商務、互聯網、金融等先驅領域開始運用,國際上也有很多國家相繼開啟了「大數據革命」。歐盟委員會早在2010年就提出了「歐盟開放數據戰略」;聯合國推出了「全球脈動」(Global Pulse)計畫,建立世界範圍內的預警機制。美國、日本、英國、法國、韓國、新加坡、印度等國都將大數據納入了國家發展計畫。 彼時,筆者開始意識到大數據巨大的發展潛力和前景,並考慮在偵查領域、司法領域推廣大數據戰略的可能性。結合中國大陸當時的信息化偵查水平、網絡偵查制度、電子取證等技術的運用,又瞭解了其他國家大數據在司法領域的運用情況,如在美國刑事偵查中「大數據預測警務」技術(predictive policing),美國民事訴訟電子證據開示中的「大數據智能檢索」技術(predictive coding)等。筆者認為,大數據在中國大陸的偵查領域將有廣闊的運用前景。
  近幾年大數據的熱興也印證了筆者的想法。各偵查部門紛紛搭建大數據應用平臺,發展大數據偵查技法,提出「智能公安」、「科技強檢」等口號。但目前實踐中各偵查部門的大數據運用尚處於摸索階段,並沒有形成統一制度,相關技術方法的運用尚不成熟,相關權利、程序缺乏法律保障。針對偵查實務中大數據運用的蓬勃之景,筆者以前瞻性的視角提出「大數據偵查」這一全新概念,對大數據偵查的內涵、特徵、思維方式、技術方法進行了歸納和總結。另外,在發展大數據偵查的過程中,大數據本身的技術、思維特徵也會不可避免地對一些傳統偵查程序造成影響,對公民的相關權利造成侵害。基於這些問題,筆者提出大數據偵查的程序規制和權利保障制度,以及數據共享、技術構建、行業規範等相關的配套制度的建設。除第一章導論外,本書共分為五個章節。
  首先,關於「大數據」及「大數據偵查」的內涵。大數據包括海量數據集、數據處理技術及數據分析結果這三層涵義。大數據不僅僅是海量數據的集合,也是集數據處理、數據分析於一體的技術體系,同時也強調反映事物背後規律的數據分析結果。正確理解大數據的內涵還需要注意,大數據的基礎在於數據化;大數據的量大是相對的,對於分析對象來說,達到「樣本=總體」的程度即可;大數據的核心價值在於數據背後的規律而非數據本身,而數據規律主要依靠數據挖掘等大數據技術來實現。相比於小數據時代的思維方式,大數據具有全數據、混雜性以及相關性的特徵:全數據意指人們完全可以採集某個研究對象的所有數據,不需要再透過抽樣調查的方式進行統計;混雜性意指不需要每個數據都精確無誤,數據的量大可以抵消部分數據的不準確;相關性則是指大數據顛覆了人類長久以來的因果關係思維,大數據能夠快速告訴我們事物之間的相關關係是什麼,卻無法解釋背後的原因。
  在此基礎上,筆者對大數據偵查的內涵和外延進行界定。從狹義上來說,大數據偵查強調採用大數據技術的偵查行為。大數據偵查是指法定偵查機關針對已發生或尚未發生的犯罪行為,為了查明犯罪事實、抓捕犯罪嫌疑人、預測犯罪等,所採取的一切以大數據技術為核心的相關偵查行為。具體而言,大數據偵查的主體是法定偵查機關,偵查的對象是已經發生或尚未發生的犯罪行為,偵查的目的是查明犯罪事實及預防犯罪活動的發生,偵查的內容是涉及大數據技術的一切偵查行為。從廣義上來說,大數據偵查不僅僅指技術層面的偵查措施,而是包括大數據偵查思維、偵查模式、偵查機制等完整體系。相比於傳統偵查而言,大數據偵查具有以下特徵:偵查空間的數據化,大數據偵查在平行的數據空間中展開,找到與物理空間人、物相對應的數據形式;偵查技術的智能化,大數據本身就集人工智能、電腦等多個學科於一體,數據收集、數據清洗到數據分析的每一個環節都離不開機器的支持,因此大數據偵查技術必然也具有智能化的色彩;偵查思維的相關性,傳統的偵查是一個由果溯因的重構犯罪過程,建立在相關性基礎上的大數據偵查改變了這一傳統邏輯,直接透過數據運算去發現各要素之間的關係,從而發掘偵查線索。大數據偵查作為一個全新的概念,也需要釐清其與技術偵查、偵查技術、信息化偵查、情報導偵等概念之間的關係。大數據偵查與技術偵查是交叉關係,大數據偵查中對某些數據的收集需要遵守技術偵查的規制;大數據偵查從屬於偵查技術的範疇;大數據偵查與傳統的信息化偵查、情報導偵之間是傳承與發展的關係,大數據偵查建立在信息化偵查、情報導偵的多年發展基礎之上,同時又大大推動了二者的發展。在目前的偵查實務中,大數據主要作為線索運用,但不排除大數據在將來會成為一種新的證據形式。總而言之,大數據偵查有利於推動事後偵查向事前偵查轉型,被動偵查向主動偵查轉型,單線偵查向協作式偵查轉型,粗放式偵查向集約式偵查轉型,它必將引領未來偵查發展的新方向。
  其次,關於大數據偵查的思維特徵。筆者結合大數據本身的特徵和其在偵查中的實務運用,提出了相關性、整體性和預測性三大特徵。相關性思維能夠告訴人們事物之間的關聯性但不能解釋為什麼。利用相關性,偵查人員可以找到犯罪現象的關聯物,透過關聯物來觀察犯罪行為本身;還可以透過大數據的相關性分析發現更多隱藏的線索。整體性思維強調大數據時代取證思維的整體性和事實認定的整體性,在整體數據中尋找與案件有關的數據,在整體事實中選取與案件有關的事實。預測性思維則強調對未來時空犯罪活動的預測,包括對人、案及整體犯罪趨勢的預測,從而有利於偵查人員合理部署偵查資源,防患於未然。當前,在「大數據熱」的氛圍中,也容易產生一些思維誤區,如認為數據越多越好、數據可以不精確、大數據分析結果一定是正確的、大數據的相關性可以替代因果性、大數據的預測性違背無罪推定原則等。然而,大數據並非是萬能的,數據採集中會有偏差,數據結果也會受到人為主觀操作影響,大數據還會產生歧視和偏見,數據分析模型也會失靈。另外,大數據偵查的相關性思維特徵還會對傳統司法證明原理帶來衝擊。如何去協調傳統偵查思維與大數據偵查思維的碰撞、如何在現有法律框架內去發揮大數據偵查的思維價值,是不得不面對的問題。
  在前述基礎上,本書歸納了大數據偵查的幾種典型模式。在實務中已有的大數據偵查案例基礎上,筆者從對象、時間等不同角度將大數據偵查提煉為不同模式。按照偵查對象的不同,大數據偵查可以分為個案分析模式和整體分析模式,前者主要針對具體個案的偵破,後者則面向於整體歷史案件的多維度分析。按照時間序列的不同,大數據偵查可以分為回溯型模式和預測型模式,回溯型模式是針對過去已經發生的犯罪行為,而預測型模式則是針對未來未知時空的犯罪,強調對犯罪活動的預測。按照數據形態的不同,大數據偵查可以分為原生數據模式和衍生數據模式,在原生數據模式中,大數據只是作為一種技術、媒介,發揮的是「找數據」功能,不會改變數據的原始狀態;而在衍生數據模式中,大數據則對原始數據進行了二次挖掘,發揮的是「分析數據」功能,獲取的是新的數據形態。從「數據化」的特徵出發,可以將大數據偵查分為「人-數-人」和「案-數-案」模式,前者是指在數據空間找到對應的數據化嫌疑人,後者是指在數據空間找到對應的數據化案件信息,兩種模式都遵循著從具體到抽象的過程,大數據在兩種模式中都扮演著連接現實空間和數據空間的中介。在傳統「由案到人」和「由人到案」的基礎上,大數據偵查可以分為「案-數-人」和「人-數-案」兩種模式,前者是以案件為中心去找嫌疑人,後者是以嫌疑人為中心去尋找案件事實,它們的共同點就在於透過大數據連接起案件與嫌疑人之間的關係。
  再次,本書介紹了實務中常用的幾種大數據偵查方法,包括數據搜索、數據碰撞、數據挖掘、數據畫像、犯罪網絡分析、犯罪熱點分析以及大數據公司取證等。數據搜索是較為簡單的方法,其原理就是在海量數據庫中檢索出相關數據,具體包括數據庫搜索、互聯網搜索和電子數據搜索幾種方式。偵查人員要注意發揮大數據智能化檢索技術、一鍵式檢索技術。數據碰撞意指透過多個數據集之間的自動比對來發現相關數據,數據碰撞往往能產生意想不到的效果。常見的數據碰撞類型有話單數據碰撞、銀行數據碰撞等。數據挖掘是大數據較核心的技術,包括關聯性分析、分類分析、時序分析等多種功能。數據挖掘的價值在於以智能化方法發現數據背後的深層次規律,發掘現象之間的聯繫,如嫌疑人的興趣愛好、行為偏好等。數據畫像是傳統犯罪心理畫像在大數據時代的新發展,透過借助基礎數據庫及數據挖掘技術,大數據可以對嫌疑人進行全方位、多維度的數據刻劃。犯罪網絡關係分析主要應用於恐怖活動犯罪、毒品犯罪等有組織的犯罪,意在透過大數據技術來發現犯罪組織成員之間的關係及其分工合作情況。犯罪熱點是分析犯罪活動在時空位置上的分布規律,大部分的犯罪往往集中在少部分地區;犯罪熱點分析還往往與犯罪預測聯繫在一起,透過對歷史犯罪熱點數據的分析來預測未來犯罪活動的趨勢和走向。在大數據偵查中,不能忽視大數據公司的作用,大數據公司所擁有的海量用戶數據是偵查中的重要數據來源,偵查機關要積極尋求與大數據公司的數據共享及技術合作。
  最後,本書論述了大數據偵查的相關制度構建,既包括大數據本身的法律程序構建,也包括與之相關的配套制度建設。從權利角度看,大數據偵查難免會侵犯公民的個人信息權。目前,刑事偵查中的個人信息保護尚屬於法律真空地帶。偵查機關的數據收集、數據共享不可避免地會形成「大數據監控社會」,帶來民眾的心理恐慌;偵查中對個人數據的二次分析、深度挖掘更是對個人信息權的嚴重侵犯。因此,本書從審查批准、個人參與、比例原則等方面去尋求大數據偵查與個人信息保護之間的價值平衡。從程序角度來看,大數據偵查過程是不透明的,當事人不知道自己的哪些數據被收集、被分析,也不知道自己被採取偵查措施的數據依據。可見,大數據偵查對傳統的正當程序帶來一定影響,剝奪了當事人的知情權、辯護權等權利。因此,本書從通知解釋、賦予異議權、數據紀錄等幾個角度去規制大數據偵查的正當程序。另外,筆者還從數據共享、技術應用以及行業規範的角度提出了大數據偵查相關配套制度。在數據共享方面,要打破不同地域、級別、部門之間的數據孤島現象,達到偵查機關內部的數據共享以及偵查機關與社會數據庫共享;在技術方面,要建立大數據偵查的技術體系和應用平臺;在行業規範方面,大數據公司要加強對個人數據的分級、分類管理,規範公權力機關調取數據的行為,對大數據公司的數據管理和第三方的數據調取進行銜接性規制。

本書係2016年國家社科基金年度項目「大數據時代電子文件的證據規則與管理法制建設研究」(項目批准號:16BFX033)階段性研究成果。


臺灣版自序

  我的導師何家弘先生在中國人民大學法學院2017屆畢業典禮上曾說過「人生之路,既要追求,也要隨緣。有些時候,隨緣就好。」《大數據偵查》一書從孕育到與臺灣讀者見面,既為時代發展使然,也是冥冥之中的某種緣分,去年秋天,與元照出版公司主編的偶然見面竟確定了本書出版事宜。
  想起本書創作過程,歷歷在目。
  2014年,我還是一名博士生,某次正苦於項目申報選題。當時正好跟隨人民大學劉品新老師做電子商務法律研究,便徵求他的建議。品新老師建議以「大數據」為主題,以我的「偵查學與證據學」專業切入,做交叉研究。他說該主題不僅可以作為項目申報,也可以作為博士論文選題深入做下去。彼時,大數據在中國大陸還尚未興起,市場上僅有零星幾本暢銷書。然而,品新老師對大數據美好藍圖的描繪仍令我頗為憧憬,他預測未來十年將屬於大數據時代。
  萬事開頭難,更何況這樣一個技術與法律相交叉的選題。花了約小半年時間,我將國內外有關大數據的書找來認真研讀,特別是維克托•邁爾•舍恩伯格的        《大數據時代》帶給我很多啟發和靈感:「不是隨機樣本而是所有數據」,「不是精確性,而是混雜性」,「不是因果關係,而是相關關係」,「一切皆可量化」等理念,迄今仍是開展大數據研究的理論起點。釐清大數據原理後,又有一個棘手的問題:如何將大數據與偵查實務相結合?我初步判斷,大數據實務運用定超前於理論發展,一線辦案部門是最好的素材來源。就這樣,開展實務調研並配合專業文獻,難題確實一步步迎刃而解。我還注意到,美國大數據偵查方面的研究已有一定成果,警務預測、大數據監控、個人數據保護等理論為實務注入了新的活力。博士論文的寫作過程頗為艱辛,然而每幾天突破一個理論點亦令人頗為興奮、充實。2015年8月31日,國家頒布《促進大數據發展行動綱要》,強調全面推進國家大數據發展和應用,加快建設數據強國;2016年十八屆五中全會又將大數據上升為國家戰略。時代的發展印證了品新老師獨到的選題眼光,也令我的研究更添了幾分信心。
  《大數據偵查研究》博士論文答辯順利通過,然而我對該主題研究卻並未停步。在博士論文基礎上撰寫的《大數據時代偵查模式的變革及其法律問題研究》一文獲2016年第十一屆中國法學青年論壇「互聯網治理與發展」主題徵文一等獎;並在此後兩年間就政府數據開放共享、大數據司法、大數據證據等主題進一步展開展研究。從2016年開始,國內法律大數據研究蔚然興起,實務應用更是遍地開花。我們利用暑期時間走訪調研了江蘇、浙江、福建、深圳等多地實務辦案部門,深入阿里巴巴、騰訊等大數據企業,將大數據偵查實務最新應用成果吸收至本書中,如大數據畫像、大數據預防腐敗、犯罪熱點分析等。眼下,大數據實務應用已從偵查領域蔓延至司法領域,檢察院、法院及律師界紛紛探索大數據在輔助定罪量刑、證據分析、類案推送、同案同判、業績考核等業務中應用。特別是隨著2017年7月國家印發《新一代人工智能發展規劃》,人工智能技術開始滲入法律界。與此同時,理論研究也紛紛跟進,數據流轉、數據開放、數據治理、個人信息保護、網絡安全等都成為時下研究熱點。「網絡法學」更成為炙手可熱的新興學科,各大高校、法學院也開啟新時代法學研究與教育轉型之路,探索「法律+技術」的交叉學科設置與人才培養戰略,形成產學研一體化的發展模式,如中國人民大學與最高人民檢察院合作成立「智慧檢務創新研究院」,東南大學與最高人民法院合作成立「司法大數據研究基地」,北京大學成立「法律人工智能研究中心」等等。
  2014年,我曾到臺灣輔仁大學訪學交流,並就兩岸冤假錯案防範救濟做過彙報。彼時與臺灣學子交流得知,臺灣習慣稱大數據為「巨量資料」。眼下,臺灣大數據的法律研究發展已蔚為風氣,運用大數據智慧決策以及大數據在犯罪防治、判決預測、教育改革、品質管理等領域研究頗為成熟。特別是大數據在健康醫療領域的研究更為突出,出現《大數據之醫療運用特輯》等系列著作,從資訊安全、法律、倫理與公民參與等不同角度進行探討。臺灣在個人數據保護方面建樹亦值得學習,1995年即有《電腦處理個人資料保護法》,2010年通過《個人資料保護法》,對公民個人資料(個人信息)進行全方位保護,在被遺忘權、個人資料匿名化等方面研究則更為深入。
  從2014年至今,不到五年的時間裡,大數據、人工智能的發展給法律界乃至整個社會生活都帶來翻天覆地的變化。一面,阿爾法狗(AlphaGo)接連戰勝人類棋手,機器人「索非亞」被授予沙特公民身分,讓我們看到了技術的無限可能;另一面,聯合國武器公約會議上所展示的神似《黑鏡Ⅲ》中的「機器殺人蜂」則又令人擔憂不已。很難想像下一個五年、十年,技術又會給人類帶來怎樣的驚喜與挑戰!法律人的明天又會怎樣?或許,最好的答案正如計算機科學家艾倫•凱(Alan Kay)所言「預測未來的最好方法是創造未來。」企望本書能給親愛的臺灣讀者帶來一些思考。如果讀者有指正意見,請E-Mail到skate2011@163.com給我,十分感謝。

王 燃
2018年2月28日

 
 注意事項:
1. 欲選購【按篇列印】,請先購買【月旦知識庫點數】即可自行下載列印。
2. 購買【月旦知識庫】的會員,在您完成付款手續之後,我們將於一至二個工作天內,以 email 專函通知您啟用點數。
 若有急需使用者,請洽客服專線 886-2-23756688 分機 502 ∼ 505,我們將以「隨選列印」方式提供。
3. 線上購書到貨七日內,如對書籍內容有任何疑慮必須換貨者,請於七日內連同發票寄回本公司更換。
4. 書籍退換貨處理作業時間約十個工作天 ( 不含例假日 )。
5. 由於貨運公司送貨到府需經簽收手續,請務必留下有人可簽收之收件地址,避免貨件滯留貨運 公司延宕收件、時間損失。
6. 若您選購的書籍包含預購書,本站將採批次寄發作業,待出書後一併寄發;若需分次寄發,酌收 55 元物流處理費。
7. 2016年1月1日起,月旦知識庫點數、月旦實務講座不適用七天鑑賞期服務。>>查看詳細說明<<
8. 元照網路書店保留接受訂單與否的權利。
9. 元照網路書店客服專線:886-2-2375-6688 分機 502 ∼ 505。


月旦實務講座 月旦影音論壇 月旦知識庫 月旦醫事法網
月旦會計網
期刊數位服務 社群平台 讀者服務 關於元照
讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路18 號 5 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄